Tiempo

Recomendar esta página Ver en PDF Imprimir esta página
Wiki de astronomía.
Todo el poder de la Wikipedia y toda la esencia de la astronomía

Tiempo

De Wikipedia, la enciclopedia libre

Para otros usos de este término véase Tiempo (desambiguación).
Un reloj es cualquier dispositivo que puede medir el tiempo transcurrido entre dos eventos que suceden en el mismo punto del espacio.

Un reloj es cualquier dispositivo que puede medir el tiempo transcurrido entre dos eventos que suceden en el mismo punto del espacio.

El tiempo es la magnitud física que mide la duración o separación de las cosas sujetas a cambio, de los sistemas sujetos a observación, esto es, el período que transcurre entre el estado del sistema cuando éste aparentaba un estado X y el instante en el que X registra una variación perceptible para un observador. Es la magnitud que permite ordenar los sucesos en secuencias, estableciendo un pasado, un presente y un futuro, y da lugar al principio de causalidad, uno de los axiomas del método científico.

Su unidad básica en el Sistema Internacional es el segundo, cuyo símbolo es s. Y, debido a que es un símbolo y no una abreviación, no se debe escribir ni con mayúscula, ni como “seg”, ni agregando un punto posterior.

Tabla de contenidos

[editar] El concepto físico del tiempo

Dados dos eventos puntuales E1 y E2, que ocurren respectivamente en instantes de tiempo t1 y t2, y en puntos del espacio P1 = (x1, y1, z1) y P2 = (x2, y2, z2), todas las teorías físicas admiten que éstos sólo pueden darse en una de tres posibilidades mutuamente excluyentes:

  1. Es posible para un observador estar presente en el evento E1 y luego estar en el evento E2, y en ese caso se afirma que E1 es un evento anterior a E2. Además, si eso sucede, ese observador no podrá verificar 2.
  2. Es posible para un observador estar presente en el evento E2 y luego estar en el evento E1, y en ese caso se afirma que E1 es un evento posterior a E2. Además si eso sucede, ese observador no podrá verificar 1.
  3. Es imposible, para un observador puntual, estar presente simultáneamente en los eventos E1 y E2.

Dado un evento cualquiera, el conjunto de eventos puede dividirse según esas tres categorías anteriores. Es decir, todas las teorías físicas permiten, fijado un evento, clasificar a los dentos en: (1) pasado, (2) futuro y (3) resto de eventos (ni pasados ni futuros). En mecánica clásica esta última categoría está formada por los sucesos llamados simultáneos, y en mecánica relativista, por los eventos no relacionados causalmente con el primer evento. Sin embargo, la mecánica clásica y la mecánica relativista difieren en el modo concreto en que puede hacerse esa división entre pasado, futuro y otros eventos y en el hecho de que dicho carácter pueda ser absoluto o relativo respecto al contenido de los conjuntos.

[editar] El tiempo en mecánica clásica

En la mecánica clásica, el tiempo se concibe como una magnitud absoluta, es decir, es un escalar cuya medida es idéntica para todos los observadores (una magnitud relativa es aquella cuyo valor depende del observador concreto). Esta concepción del tiempo recibe el nombre de tiempo absoluto. Esa concepción está de acuerdo con la concepción filosófica de Kant, que establece el espacio y el tiempo como necesarios por cualquiera experiencia humana.

Cada observador hará una división tripartita de los eventos clasificándolos en: (1) eventos pasados, (2) eventos futuros y (3) eventos ni pasados y ni futuros, la mecánica clásica y la física pre-relativista asumen:

  1. Fijado un acontecimiento concreto todos los observadores sea cual sea su estado de movimiento dividirán el resto de eventos en los mismos tres conjuntos (1), (2) y (3), es decir, dos observadores diferentes coincidirán en qué eventos pertenecen al pasado, al presente y al futuro, por eso el tiempo en mecánica clásica se califica de “absoluto” porque es una distinción válida para todos los observdores (mientras que en mecánica relativista esto no sucede y el tiempo se califica de “relativo”).
  2. En mecánca clásica, la última categoría, (3), está formada por un conjunto de puntos tridimensional, que de hecho tiene la estructura de espacio euclídeo. Dados dos eventos se llaman simultáneos fijado uno de ellos el segundo es un evento de la categoría (3).

Aunque dentro de la teoría especial de la relatividad y dentro de la teoría general de la relatividad, la división tripartita de eventos sigue siendo válida, no se verifican las últimas dos propiedades: ni el conjunto de eventos ni pasados ni futuros es tridimensional, y de hecho no existe una noción de simultaneidad indepediente del observador como en mecánica clásica.

Aunque dentro de la teoría especial de la relatividad y dentro de la teoría general de la relatividad, la división tripartita de eventos sigue siendo válida, no se verifican las últimas dos propiedades:

  1. Ni el conjunto de eventos ni pasados ni futuros es tridimensional
  2. No existe una noción de simultaneidad indepediente del observador como en mecánica clásica.

[editar] El tiempo en mecánica relativista

En mecánica relativista la medida del transcurso tiempo depende del sistema de referencia donde esté situado el observador y de su estado de movimiento, es decir, diferentes observadores miden diferentes tiempos transcurridos entre dos eventos causalmente conectados. Por tanto, la duración de un proceso depende del sistema de referencia donde se encuentre el observador.

De acuerdo con la teoría de la relatividad, fijados dos observadores situados en diferentes marcos de referencia, dos sucesos A y B dentro de la categoría (3) de eventos ni pasados ni futuros, pueden ser percibidos por los dos observadores como simultáneos, o puede que para A ocurra “antes” que B para el primer observador mientras que B ocurre “antes” de A para el segundo observador. En esas circunstancias no existe, por tanto, ninguna posibilidad establecer una noción absoluta de simultaneidad independiente del observador. De hecho en relatividad general el conjunto de los sucesos dentro de la categoría (3) es un subconjunto tetradimensional topológicamente abierto del espacio-tiempo.

Sólo si dos sucesos están atados causalmente todos los observadores ven el suceso “causal” antes que el suceso “efecto”, es decir, las categorías (1) de eventos pasados y (2) de de eventos futuros causalmente ligados sí son absolutos. Fijado un evento E el conjunto de eventos de la categoría (3) que no son eventos ni futuros ni pasados respecto a E puede dividirse en tres subconjuntos:

(a) El interior topológico de dicho conjunto, es una región abierta del espacio-tiempo y constituye un conjunto acronal. Dentro de esa región dados cualesquiera dos eventos resulta imposible conectarlos por una señal luminosa que emitida desde el primer evento alcance el segundo.
(b) La frontera del futuro o parte de la frontera topológica del conjunto, tal que cualquier punto dentro de ella puede ser alcanzado por una señal luminosa emitida desde el evento E.
(c) La frontera del pasado o parte de la frontera topológica del conjunto, tal que desde cualquier dentro de ella puede enviarse una señal luminosa que alcance el evento E.

Las curiosas relaciones causales de la teoría de la relatividad, conllevan que no existe un tiempo único y absoluto para los observadores, de hecho cualquier observador percibe el espacio-tiempo cuatridimensional según su estado de movimiento, la dirección paralela a su cuadrivelocidad coincidirá con la dirección temporal, y los eventos que se mueven según hipersuperficies espaciales perpendiculares en cada punto a la dirección temporal forman el conjunto de acontecimientos simultáneos para ese observador. Lamentablemente dichos conjuntos de acontecimientos percibidos como simultáneos difieren de un observador a otro.

[editar] El tiempo en mecánica cuántica

En mecánica cuántica debe distinguirse entre la mecánica cuántica convencional, en la que puede trabajarse bajo el supuesto clásico de un tiempo absoluto, y la mecánica cuántica relativista, para la cual, al igual que sucede en la teoría de la relatividad, el supuesto de un tiempo absoluto es inaceptable.

[editar] La fecha del tiempo y la entropía

Artículo principal: Flecha del tiempo

Se ha señalado que la dirección del tiempo está relacionada con el aumento de entropía, aunque eso parece deberse a las peculiares condiciones que se dieron durante el Big Bang. Aunque algunos científicos como Penrose han argumentado que dichas condiciones no serían tan peculiares si consideramos que existe un principio o teoría física más completa que explique porqué nuestro universo, y tal vez otros, nacen con condiciones iniciales aparentemente improbables, que se reflejan en una bajísima entropía inicial.

[editar] La medición del tiempo

La cronología (histórica, geológica, etc.) permite datar los momentos en los que ocurren determinados hechos (lapsos relativamente breves) o los procesos (lapsos de duración mayor). En una línea de tiempo se puede representar gráficamente los momentos históricos en puntos y los procesos en segmentos.

Reloj de sol, de bolsillo.

Reloj de sol, de bolsillo.

Las formas e instrumentos para medir el tiempo son de uso muy antiguo y todas ellas se basan en la medición del movimiento, del cambio material de un objeto a través del tiempo, que es lo que puede medirse. En un principio se comenzaron a medir los movimientos de los astros, básicamente el movimiento aparente del Sol, dando lugar al tiempo solar aparente. El desarrollo de la astronomía hizo que, de manera paulatina, se fueran creando diversos instrumentos, tales como los relojes de sol, las clepsidras o los relojes de arena. Posteriormente, la determinación de la medida del tiempo se fue perfeccionando hasta llegar al reloj atómico. El viaje del mundo real al mundo virtual ha dado origen a una nueva forma de medir el tiempo, los .beats, cada .beat equivale a 1 minuto 26.4 segundos. el primero de ellos @000 cuenta a partir de las cero horas del Meridiano de Beil, en Suiza, este tiempo de Internet es el mismo en todo el mundo, y finaliza con cada día con @999.

Imagen:Internettime.jpg

Reloj para Internet.

[editar] Véase también

[editar] Enlaces internos

Commons

Wikiquote

Scroll to Top